sinθ+cosθ=1/2のとき、sin3θ+cos3θの値は次のどれか。
(1) 2
(2) 1/8
(3) 5/8
(4) 5/16
(5) 11/16
(5)
(sinθ+cosθ)3=sin3θ+3sinθ2cosθ+3sinθcosθ2+cos3θ
sinθ2=sin2θ=1-cos2θ
cosθ2=cos2θ=1-sin2θ
(sinθ+cosθ)3=sin3θ+3(1-cos2θ)cosθ+3sinθ(1-sin2θ
)+cos3θ
=sin3θ+3cosθ-3cos3θ+3sinθ-3sin3θ
+cos3θ
=-2sin3θ-2cos3θ+3cosθ+3sinθ
2sin3θ+2cos3θ=3cosθ+3sinθ-(sinθ+cosθ)3
sin3θ+cos3θ={3(sinθ+cosθ)-(sinθ+cosθ)3}×1/2
=11/16